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Abstract

The present work extends and generalizes the notion of frequency-
distributed (FD) representation to a broad class of linear, stationary, conti-
nuous-time systems. On one hand, the proposed FD representation can be
seen as a generalization of the diffusive representation, which is primarily
utilized in the context of fractional order systems. Alternatively, it can also
be seen as an extension to the Jordan canonical form, which is used as one
of the main theoretical tools when analyzing finite-dimensional systems.
Sufficient conditions under which FD representation can be achieved are
derived. The proposed approach ensures real-valued state functions and
output weights even when applied to oscillatory systems, and in a wast
majority of cases manages to avoid utilization of generalized functions. Po-
tential applications include simulation, representation theory and stability
analysis, control synthesis, etc. All considerations have been illustrated by
numerical examples.
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1. Introduction

Infinite-dimensional models are used throughout engineering and physics
to describe various retarded, spatially-distributed, distributed-parameter
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and hereditary models. In the core of many such models are linear sys-
tems described by irrational transfer functions, i.e. those that cannot be
represented as quotients of polynomials in the differentiation operator.

Detailed introduction into the theory of infinite-dimensional linear sys-
tems can be found in [7]. For an overview of transfer functions charac-
teristic for various types of distributed-parameter systems we refer to [6].
In the past couple of decades fractional calculus has been recognized as
a successful modeling tool in many scientific and engineering disciplines
[30, 18]. Transfer functions corresponding to fractional order systems are
also irrational, a property which is of significant interest in control [9]. Nu-
merous models involving integro-differential operators of non-integer order
have been proposed [39]. Control of such systems has become a vibrant
research topic in the last decades, see e.g. [29, 17, 5, 34, 27]. More elabo-
rate irrational models can be obtained by considering spatially-distributed
fractional order systems [19, 4, 31, 8], distributed-order fractional models
[14, 2, 12], complex-order models [3], and others.

Many common tasks are nontrivial when dealing with infinite-dimensio-
nal systems, including stability analysis and stabilization, simulation and
realization. In light of these difficulties, the diffusive representation
(DR) was introduced in 1990’s with the aim of representing “non-standard”
pseudo-differential operators by means of classical, albeit infinite dimen-
sional, state-space models. It is most frequently used in the context of frac-
tional order systems, for which it was originally developed [26]. However,
it has been shown that DR can be effectively applied to a much broader
class of linear operators of “diffusive” nature [25, 21].

According to [25, 21] a linear, time-invariant, causal system with im-
pulse response (kernel, Green’s function) g(t) and transfer functions G(s) =
L{g(t)} allows the diffusive representation if there exists γ : [0,∞) → R

such that

g(t) =

∫ ∞

0
γ(ξ)e−ξtdξ . (1.1)

In this case, the process under consideration may be represented by the
following frequency-distributed (FD) state-space form

∂x(t, ξ)

∂t
= −ξ x(t, ξ) + u(t) , (1.2)

y(t) =

∫ ∞

0
γ(ξ)x(t, ξ)dξ , (1.3)

where the output weight function γ is computed as

γ(ξ) = lim
ε→0

1

π
Im G(−ξ − jε) . (1.4)
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The frequency-distributed realization (1.2) may be seen as consisting of an
infinite set of completely decoupled first order ordinary differential equations
involving auxiliary variables x(t, ξ). Thus, it can be regarded as a proper
state-space realization of an infinite-dimensional system, with “frequency-
distributed” state variables x(t, ξ). Parameter ξ should be interpreted as the
cut-off frequency (bandwidth) of the elementary sub-systems, or “states”,
in (1.2).

Several extensions and generalizations of the diffusive representation
were considered [25]. In many cases DR is only possible provided that γ
is interpreted as generalized function (a distribution, see [32]). “Diffusive
Representation of the Second Kind”, applicable to certain classes of oscil-
latory systems, was proposed in [10]. In this generalization, (1.2) and (1.3)
should be replaced by

∂x(t, ξ)

∂t
= − (ξ + jω) x(t, ξ) + u(t) , (1.5)

y(t) = Re

∫ ∞

0
γ(ξ)x(t, ξ)dξ , (1.6)

where j is the imaginary unit, ω > 0 is fixed, and both the state function x
and the output weight γ are allowed to be complex-valued. Diffusive rep-
resentations of certain classes of infinite dimensional discrete-time systems,
the so called “diffusive filters”, were considered in [20, 10], while DR of
fractional laplacian operator has been addressed in [23].

The diffusive representation was utilized very early in stability anal-
ysis of fractional order systems. Indeed, in [21] it was used as the cor-
nerstone in the proof of the celebrated Matignon’s Theorem. Stability of
certain “generalized” forms of fractional systems, including discrete-time
ones, was considered in [20]. A link towards application of Lyapunov and
LaSalle techniques was further investigated in [22], while a Lyapunov-based
approach to stability analysis of fractional differential equations, both lin-
ear and nonlinear ones, was considered in [37]. DR was also utilized to
propose a natural solution to the problem of initialization of fractional or-
der systems in [35]. For a related discussion regarding state variables and
transients, we refer to [38, 36]. An approach to solving optimal control
problems regarding FOS by means of DR was considered in [24]. The dif-
fusive representation has also been extensively used in order to develop
approximate, finite-dimensional models of fractional systems, see [26, 25].

The aim of the present work is to extend the notion of frequency-
distributed representation to a broader class of systems. We investigate
sufficient conditions under which FD representation can be achieved. We
also demonstrate that, even in cases when representation (1.2), (1.3) is not
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applicable, a similar “decoupled” form involving more complex elementary
dynamical systems associated with each value of cut-off frequency ξ can be
obtained. Contrary to [10], the approach we are proposing ensures real-
valued states and output weight functions even when applied to oscillatory
systems. Contrary to [25], we manage to avoid utilization of generalized
functions in a majority of cases. Indeed, frequency-distributed representa-
tion proposed in the present paper can be seen as a generalization of the
Jordan canonical form [15, 1]. As a secondary result, the proposed approach
also generalizes the notions of Heaviside’s partial fractions decomposition
[11, 33] and Prony’s expansion [13].

The paper is organized in the following manner. This introductory
section finishes with a brief account of the standard notation and termi-
nology. A derivation of the (slightly generalized) diffusive representation
is presented in Section 2, with a particular emphasis to the conditions un-
der which DR is achievable. Extension to a class of oscillatory systems is
proposed in Section 3. Section 4 proposes a modified FD representation
in certain cases which do not satisfy conditions established in the previous
sections. Some of these cases were also considered in [25], but the output
weight had to be interpreted in the distributional sense. We managed to cir-
cumvent this by modifying the structure of the state-space equation (1.2).
Unification of the various FD representation is considered in Section 5,
which also discusses and emphasizes the fact that these representations are
not unique. Connections to modal representation and the Jordan canonical
form of finite-dimensional systems is discussed in Section 6. This Section
also demonstrated the fact that distributional interpretation of the out-
put weight is sometimes unavoidable. Final comments and possibilities for
further work are given in the final Section 7.

Notation and terminology. Sets of real and complex numbers will
be denoted by R and C, respectively. Imaginary unit will be denoted by
j. For a complex number z, its conjugate number will be denoted by z∗.
For a time-dependent signal (function) g(t), its Laplace transform will be
denoted by G(s) = L{g(t)}. Similar notation will be used for the inverse
Laplace transform, i.e. g(t) = L−1{G(s)}.

We recall that the transfer function of a linear, stationary system is
defined as the ratio of Laplace transforms of its output and input, when
all initial conditions are equal to zero. The inverse Laplace transform of
the transfer function is referred to as the impulse response or kernel. The
output of such a system is

y(t) = (g � u)(t) =

∫ t

0
g(t− τ)u(τ)dτ ,
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where � is used to denote the operation of convolution. Less precise, but
sometimes more convenient notation g(t) � u(t), will also be used.

2. The diffusive representation

In the present section we reiterate (a slightly generalized version of)
frequency-distributed representation of systems having real-valued branch-
ing points [26, 25, 21, 20]. A particular attention will be paid to the con-
ditions under which such representation is possible. Lessening of these
constraints in the sequel will enable us to derive more general FD repre-
sentations.

Assumption 1. The kernel g(t) is real-valued. Consequently, G(s) is sym-
metric w.r.t. to the real line, i.e. G(s∗) = (G(s))∗.

Assumption 2. G(s) is analytic on C \ (−∞, a] for some a ∈ R.

Assumption 3. lim
s→0

sG(s+ a) = 0.

Assumption 4. lim
|s|→∞

G(s) = 0.

Assumption 5. For each ξ ∈ (−a,∞) there exist well-defined limits G+

and G−

G±(ξ) = lim
ε→0+

G(−ξ ± jε) ,

and an absolutely integrable function Gξ : R
+ → R such that for almost all

t > 0, |G±(ξ)e−ξt| < Gξ(t).

Theorem 2.1. Under Assumptions 1–5, the impulse response (kernel)
of the system described by transfer function G(s) can be computed as

g(t) =

∫ ∞

−a
γ(ξ)e−ξtdξ , (2.1)

yielding the diffusive representation (1.2), (1.4) and

y(t) =

∫ ∞

−a
γ(ξ)x(t, ξ)dξ . (2.2)

P r o o f. The kernel g, i.e. the inverse Laplace transform of G, can
always be computed by means of the Fourier-Mellin inversion formula [33]

g(t) =
1

2π j

∫ �+j∞

�−j∞
G(s)estd s (
 > a) . (2.3)

Due to Assumptions 2 and 4, the Bromwich contour of (2.3) can be de-
formed as shown in Figure 1. In particular, this can be verified by slight
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modification of Jordan’s Lemma [32], as has been done in [33]∗. Modification
of the contour gives rise to the following expression

g(t) =
1

2π j
lim
ε→0

(∫
AB

+

∫
BC

+

∫
CD

)
, (2.4)

where integrands, which are the same as in (2.3), have been suppressed.
It is not hard to show that

∫
BC vanishes. By setting s = a + εejϕ, one

immediately finds that∣∣∣∣
∫
BC

∣∣∣∣ =
∣∣∣∣∣
∫ π/2

−π/2
G(a+ εejϕ)e(a+εejϕ)tεejϕjdϕ

∣∣∣∣∣
≤
∫ π/2

−π/2

∣∣εG(a+ εejϕ)
∣∣ eatdϕ .

Due to Assumption 3, the inner absolute value will vanish for any ϕ as ε
diminishes to zero, thus the entire integral vanishes also. Evaluating the
remaining terms,∫

AB
+

∫
CD

=−
∫ −a

∞
G(−ξ − jε)e−ξtdξ −

∫ ∞

−a
G(−ξ + jε)e−ξtdξ

=

∫ ∞

−a

[
G(−ξ − jε) −G(−ξ + jε)

]
e−ξtdξ .

By Assumption 1, G(−ξ − jε)−G(−ξ + jε) = 2jIm {G(−ξ − jε)}, and

g(t) = lim
ε→0+

1

π

∫ ∞

−a
Im {G(−ξ − jε)}e−ξtdξ . (2.5)

Finally, the limit and integration can interchange as a result of Assump-
tion 5 and the celebrated Dominated Convergence Theorem [28], which
immediately gives rise to (1.4).

Having in mind that the response of a linear, time-invariant system can
be obtained by convolving the input with its impulse response, one obtains

y(t) =

∫ ∞

0
g(t− τ)u(τ)dτ =

∫ ∞

0

(∫ ∞

−a
γ(ξ)e−ξ(t−τ)dξ

)
u(τ)dτ .

Finally, (1.3) is obtained by changing the order of integration, which is
allowed by the [28], and introducing the “internal” variables

x(t, ξ) =

∫ t

0
e−ξ(t−τ)u(τ)dτ .

∗ Note that the assumption |F (s)| ≤ M
|s|p for some M > 0, p > 0 which is used in [33]

is not actually required. The proof presented in [33] remains valid if Assumption 4 (used
also by the Jordan lemma itself) is introduced instead.
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Figure 1. Integration contour used to derive generalized
diffusive representation. The circular part of the contour
with radius tending to infinity is omitted for clarity.

It can be verified in a fairly straightforward manner that the internal vari-
ables satisfy state equations (1.2), which concludes the proof. �

Note 1. Expression (2.1) can be seen as a generalization to Prony’s
expansion [13]. Its Laplace transform

G(s) =

∫ ∞

−a
γ(ξ)

1

s + ξ
dξ ,

immediately generalizes Heaviside’s partial fraction expansion.

3. Extension to a class of oscillatory systems

In the present section, the frequency-distributed representation will be
extended to a class of systems having complex-conjugate branching points.

Assumption 2A. There exists ω ∈ R such that all singularities of G(s)
belong to the union of two “horizontal” lines

(−∞+ jω, a+ jω] ∪ (−∞− jω, a− jω]

for some a ∈ R.

Assumption 3A. lim
s→0

sG(s+ a± jω) = 0.

Assumption 5A. For each ξ ∈ (−a,∞) there exist well-defined limits G+

and G−

G±(ξ) = lim
ε→0+

G(−ξ + j(ω ± ε)) ,

and an absolutely integrable function Gξ : R
+ → R such that for almost all

t > 0, |G±(ξ)e−ξt| < Gξ(t).
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Theorem 3.1. Under assumptions 1, 2A, 3A, 4 and 5A, the impulse
response (kernel) of the system described by transfer function G(s) can be
computed as

g(t) =

∫ ∞

−a
[γc(ξ) cos(ωt)− γs(ξ) sin(ωt)] e

−ξtdξ , (3.1)

where

γc(ξ) =
1

π
lim
ε→0+

Im {G(−ξ − j(ω + ε)) −G(−ξ − j(ω − ε))} , (3.2)

γs(ξ) =
1

π
lim
ε→0+

Re {G(−ξ − j(ω + ε))−G(−ξ − j(ω − ε))} ; (3.3)

yielding frequency-distributed representation

∂xc(t, ξ)

∂t
= −ξxc(t, ξ)− ωxs(t, ξ) + u(t) (3.4)

∂xs(t, ξ)

∂t
= ωxc(t, ξ)− ξxs(t, ξ) (3.5)

y(t) =

∫ ∞

−a
[γc(ξ)xc(t, ξ)− γs(ξ)xs(t, ξ)] dξ . (3.6)

P r o o f. The proof will be conducted in much the same way as the
proof of Theorem 2.1, by deforming the Bromwich contour used for evalu-
ating the impulse response g. In this case, however, the integration contour
should be one depicted in Fig. 2. By means of the assumptions, the inte-
gral vanishes along the “small” semi-circles of radius ε, as well as along the
“big” semicircle of radius R. Therefore

g(t) =
1

2πj
lim
ε→0

(∫
D′C′

+

∫
B′A′

+

∫
AB

+

∫
CD

)
.

By virtue of Assumption 5A, the Dominated Convergence Theorem holds,
and the order of limit and integration can interchange. After some rear-
rangements, due to the continuity of the exponential function, one obtains

g(t) =
1

2πj

∫ ∞

−a
lim
ε→0

{
[G(−ξ − jω − jε) −G(−ξ − jω + jε)] e(−ξ−jω)t

− [G(−ξ + jω + jε) −G(−ξ + jω − jε)] e(−ξ+jω)t
}
dξ .

The first and the second term are, obviously, complex conjugate to each
other. Therefore, the subtraction will cancel their real parts, and only
double imaginary part will remain,

g(t) =
1

π

∫ ∞

−a
lim
ε→0

Im
{
[G(−ξ − jω − jε)−G(−ξ − jω + jε)] e(−ξ−jω)t

}
dξ .
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Figure 2. Integration contour used to derive diffusive rep-
resentation in case when G(s) has branch-cuts along hori-
zontal lines with non-zero imaginary parts.

Expression (3.1) is obtained by introducing (3.2) and (3.3). By further
defining

xc(t, ξ) = e−ξt cos(ωt) � u(t) , (3.7)

xs(t, ξ) = e−ξt sin(ωt) � u(t) , (3.8)

the frequency-distributed representation (3.4), (3.5), (3.6) is finally ob-
tained. It is straightforward to check that xc and xs satisfy state equations
(3.4) and (3.5). �

Note 2. Expressions (3.4) and (3.5) should be compared with (1.5)
of the “Diffusive representation of the second kind” of Dauphin et al [10].
Similar comparison should be made between (1.3) and (1.6). While the
representation presented in [10] preserves purely diagonal structure, the
price to pay is that both states and output weight must be allowed to be
complex-valued. In contrast, the representation proposed in the present
paper is “block-diagonal”, but purely real.

Example 3.1. Consider operator described by transfer functionG(s) =
1√
s2+1

, with branching points s = ±j. The kernel is the well-known Bessel

function of the first kind J0(t) [16]. By direct computation one verifies that

lim
ε→0

G(−ξ − j(1 ± ε)) =
±j√

ξ
√−ξ − 2j

,
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and consequently

lim
ε→0

[G(−ξ − j(1 + ε))−G(−ξ − j(1− ε))] =
2j√

ξ
√−ξ − 2j

=
−2√

ξ 4
√
ξ2 + 4

e
− j

2
arctan 2

ξ .

All assumptions of Theorem 3.1 are satisfied. In particular, the majorizing
function of Assumption 5A can be selected as

G(ξ, t) =
C√

ξ 4
√

ξ2 + 4
e−ξt ,

with C > 1 sufficiently large. Expressions (3.2) and (3.3) reduce to

γc(ξ) =
−2

π
√
ξ 4
√

ξ2 + 4
sin(

1

2
arctan

2

ξ
) ,

γs(ξ) =
2

π
√
ξ 4
√

ξ2 + 4
cos(

1

2
arctan

2

ξ
) .

The corresponding integral representation of the Bessel function is obtained
from (3.1) as

J0(t) = J0,c(t)− J0,s(t) , (3.9)

with

J0,c(t) =

∫ ∞

0
γc(ξ) cos(t)e

−ξtdξ ,

J0,s(t) =

∫ ∞

0
γs(ξ) sin(t)e

−ξtdξ .

The computation is illustrated by Fig. 3.

4. Further generalizations

The major obstacle in application of frequency-distributed represen-
tation in practice comes from Assumptions 3/3A and 5/5A. However, it
often happens that although a specific transfer function does not satisfy
these assumptions, its anti-derivative of a sufficiently high order does. The
following claims extend the frequency-distributed representation to such
cases.

Theorem 4.1. Let G0(s) be a transfer function satisfying all assump-
tions of Theorem 2.1. Let G be n-th anti-derivative of G0 w.r.t. s for some
n ∈ N. The impulse response (kernel) of G can be computed as

g(t) = (−t)n
∫ ∞

0
γ0(ξ)e

−ξtdξ , (4.1)
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Figure 3. Evaluation of the Bessel function J0(t) (shown
by thick line) by means of (3.9) (shown by thick circles).
Long-dashed and short-dashed lines represent J0,c(t) and
J0,s(t), respectively.

yielding frequency-distributed representation of the form

∂x1(t, ξ)

∂t
= −ξx1(t, ξ) + u(t) , (4.2)

∂xi(t, ξ)

∂t
= −ξxi(t, ξ) + xi−1(t, ξ) , i ∈ {2, . . . , n+ 1} , (4.3)

y(t) = (−1)n n!

∫ ∞

0
γ0(ξ)xn+1(t, ξ)dξ , (4.4)

where

γ0(ξ) =
1

π
lim
ε→0

Im {G0(−ξ − j ε)} (4.5)

P r o o f. By assumption G(s) =
(

d
ds

)n
G0(s). Differentiation in the

complex domain is equivalent to multiplication by −t in the time-domain,
i.e. g(t) = (−t)ng0(t) [33]. Since g0 allows a diffusive representation,

g(t) = (−t)ng0(t) = (−t)n
∫ ∞

0
γ0(ξ)e

−ξtdξ

= (−1)n
∫ ∞

0
γ0(ξ)

(
tne−ξt

)
dξ (4.6)

with γ0 defined by (4.5). It is not hard to see that

tne−ξt = n! e−ξt � e−ξt � . . . � e−ξt︸ ︷︷ ︸
n+1 times

. (4.7)
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Indeed, the Laplace transform of both sides in the above expression is
n!

(s+ξ)n+1 . The response of G to input u can therefore be computed as

y(t) = (−1)n
∫ ∞

0
γ0(ξ)

[(
tne−ξt

)
� u(t)

]
dξ

= (−1)n n!

∫ ∞

0
γ0(ξ)

⎡
⎣e−ξt � e−ξt � . . . � e−ξt︸ ︷︷ ︸

n+1 times

� u(t)

⎤
⎦ dξ . (4.8)

By choosing the internal variables as

x1(t, ξ) = e−ξt � u(t) ,

xi(t, ξ) = e−ξt � xi−1(t, ξ) , i ∈ {2, . . . , n+ 1} ,

it is straightforward to check that relations (4.2) and (4.3) hold. �

Example 4.1. Consider fractional integral of order β ∈ (1, 2), G(s) =
s−β. This transfer function does not allow for direct application of Theorem

2.1, but its first anti-derivative G0(s) =
s1−β

1−β does, with

γ0(ξ) =
sin((β − 1)π)

π(1− β)ξβ−1
= − sin(βπ)

π(1− β)ξβ−1
.

The corresponding frequency-distributed representation in the sense of The-
orem 4.1 would be

∂x1(t, ξ)

∂t
= −ξx1(t, ξ) + u ,

∂x2(t, ξ)

∂t
= −ξx2(t, ξ) + x1(t, ξ) ,

y(t) = −
∫ ∞

0
γ0(ξ)x2(t, ξ)dξ .

Expression (4.1) reduces to

tβ−1

Γ(β)
= t

∫ ∞

0

sin(βπ)

π(1− β)

e−ξt

ξβ−1
dξ . (4.9)

The computation is illustrated by Fig. 4.

Theorem 4.2. Let G0(s) be a transfer function satisfying all assump-
tions of Theorem 3.1. Let G be n-th anti-derivative of G0 w.r.t. s for some
n ∈ N. The impulse response (kernel) of G can be computed as

g(t) = (−t)n
∫ ∞

a

[
γ0,c(ξ)e

−ξt cos(ωt)− γ0,s(ξ)e
−ξt sin(ωt)

]
dξ , (4.10)

yielding frequency-distributed representation of the form
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Figure 4. Evaluation of the power kernel tβ−1/Γ(β) for
β = 1.5 (shown by thick line) by means of (4.9) (shown by
filled circles).

∂x1,c(t, ξ)

∂t
= −ξx1,c(t, ξ)− ωx1,s(t, ξ) + u(t) (4.11)

∂x1,s(t, ξ)

∂t
= ωx1,c(t, ξ)− ξx1,s(t, ξ) (4.12)

∂xi,c(t, ξ)

∂t
= −ξxi,c(t, ξ)− ωxi,s(t, ξ) + xi−1,c(t, ξ) , i ∈ {2, . . . , n+ 1}

(4.13)

∂xi,s(t, ξ)

∂t
= ωxi,c(t, ξ) − ξxi,s(t, ξ) + xi−1,s(t, ξ) , i ∈ {2, . . . , n + 1}

(4.14)

y(t) = (−1)n n!

∫ ∞

a
[γ0,c(ξ)xc,n+1(t, ξ)− γ0,s(ξ)xs,n+1(t, ξ)] dξ ,

(4.15)

where

γ0,c(ξ) =
1

π
lim
ε→0+

Im {G0(−ξ − j(ω + ε))−G0(−ξ − j(ω − ε))} , (4.16)

γ0,s(ξ) =
1

π
lim
ε→0+

Re {G0(−ξ − j(ω + ε))−G0(−ξ − j(ω − ε))} . (4.17)

P r o o f. By assumption G(s) =
(

d
ds

)n
G0(s). Differentiation in the

complex domain is equivalent to multiplication by −t in the time-domain,
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i.e. g(t) = (−t)ng0(t) [33]. Since g0 allows a frequency-distributed repre-
sentation,

g(t) = (−1)nn!

∫ ∞

a

[
γ0,c(ξ)

tn

n!
e−ξt cos(ωt)− γ0,s(ξ)

tn

n!
e−ξt sin(ωt)

]
(4.18)

with γ0,c and γ0,s defined by (4.16) and (4.17), respectively. Let us define

xi,c(t, ξ) =
ti−1

(i− 1)!
e−ξt cos(ωt) � u(t) , (4.19)

xi,s(t, ξ) =
ti−1

(i− 1)!
e−ξt sin(ωt) � u(t) , (4.20)

for all i ∈ {1, . . . , n+ 1}. It can be easily verified that

d

d t
f(t) � h(t) = ḟ(t) � h(t) + f(0) � h(t) . (4.21)

Consequently, for i ∈ {2, . . . , n+ 1}
∂xi,c(t, ξ)

∂t
=

ti−1

(i− 1)!
e−ξt cos(ωt) � u(t) ,

=

[
−ξ

ti−1

(i− 1)!
e−ξt cos(ωt)− ω

ti−1

(i− 1)!
e−ξt sin(ωt)

+
ti−2

(i− 2)!
e−ξt cos(ωt)

]
� u(t)

= −ξxi,c(t, ξ)− ωxi,s(t, ξ) + xi−1,c(t, ξ) .

Thus, expression (4.13) is derived. Expressions (4.11), (4.12) and (4.14)
follow by similar arguments. The output equation (4.15) is obtained di-
rectly by inserting (4.19) and (4.20) into (4.18) and convolving with the
input signal u. �

5. Unification and alternative representations

All frequency-distributed representations considered thus far can be
cast in a unique framework. Indeed, the essence of this representation is
to decompose the system under consideration G(s) into an infinite parallel
connection of simple, finite dimensional sub-systems G(s, ξ), indexed by a
continuous real parameter ξ. The overall output is then constructed by su-
perposition of outputs of individual sub-systems, according to a particularly
selected output weighting function. Different frequency-distributed repre-
sentations, as considered in Theorems 2.1, 3.1, 4.1 and 4.2, are obtained
due to variations in structure and complexity of individual sub-systems un-
der different conditions. Indeed, all of them can be obtained by applying
classical realization theory [11, 1, 15] to G(s, ξ) for each fixed ξ.
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In the present section, we propose a unified representation

y(t) =

∫ ∞

−∞
(ξ)y(t, ξ)dξ , (5.1)

y(t, ξ) = g(t, ξ) � u(t) , (5.2)

where g(t, ξ) is the impulse response of G(s, ξ), i.e. g(t, ξ) = L−1{G(s, ξ)},
and y(t, ξ) is its response to the common input signal u(t). The output
weighting function  is closely related to the previously considered output
weights γ, γs, γc, etc., but is not a direct substitute for any of them, as
will be discussed in the sequel. The proposed unified representation also
implies that

g(t) =

∫ ∞

−∞
(ξ)g(t, ξ)dξ , (5.3)

G(s) =

∫ ∞

−∞
(ξ)G(s, ξ)dξ . (5.4)

These expressions fully generalize expansions of Prony and Heaviside, re-
spectively.

The diffusive representation (1.2), (1.3) established by Theorem 2.1 is
recovered by setting G(s, ξ) = 1

s+ξ and y(t, ξ) = x(t, ξ). With a slight abuse

of notation, one may write

(ξ) = γ(ξ)h(ξ + a) ≡
{
γ(ξ) , ξ > −a

0 , otherwise
,

where h is Heaviside’s unit step function [11]. In this simplest case, the
individual sub-components are first order systems and the diffusive repre-
sentation can be considered as a diagonal realization of an irrational trans-
fer function. The diffusive representation is not unique. It would also be

possible to consider G(s, ξ) = γ(ξ)
s+ξ , yielding (ξ) = h(ξ + a), and

∂x(t, ξ)

∂t
= −ξx(t, ξ) + γ(ξ)u(t) .

Also, provided that γ is positive for all ξ, it is possible to choose G(s, ξ) =√
γ(ξ)

s+ξ , with (ξ) =
√

γ(ξ)h(ξ + a), and

∂x(t, ξ)

∂t
= −ξx(t, ξ) +

√
γ(ξ)u(t) .

Frequency-distributed representation of oscillatory systems (3.4), (3.5)
and (3.6), considered in Theorem 3.1, is recovered by choosing

G(s, ξ) =
γc(ξ)(s + ξ) + γs(ξ)ω

(s+ ξ)2 + ω2
,
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and (ξ) = h(ξ + a), and selecting the state variables according to (3.7),
(3.8). The corresponding elementary output is y(t, ξ) = γc(ξ)xc(t, ξ) +
γs(ξ)xs(t, ξ). This is, off course, not a unique way of choosing elementary
state variables. By opting for the observable canonical form [11, 1, 15],
for example, an alternative frequency distributed realization of a transfer
function satisfying all assumptions of Theorem 3.1 would become

∂x1(t, ξ)

∂t
= −2ξx1(t, ξ + x2(t, ξ) + γc(ξ)u(t) ,

∂x2(t, ξ)

∂t
=−(ξ2 + ω2)x1(t, ξ) + (γx(ξ)ξ + γs(ξ)ω) u(t) ,

with y(t, ξ) = x1(t, ξ) and (ξ) = h(ξ + a). Obviously, other options are
available.

Diffusive representation (4.2), (4.3), (4.4) considered in Theorem 4.1 is
recovered by considering elementary transfer functions

G(s, ξ) =
1

(s + ξ)n+1
,

and setting (ξ) = (−1)nn!γ0(ξ)h(ξ + a). Since the elementary system
has repeated real poles, expressions (4.2)–(4.4) should be seen as a gen-
eralization of the Jordan canonical form to transfer functions of infinite
dimension. The “signature structure” of eigenvalues on the main diagonal
and ones on the super-diagonal is clearly preserved. Other realizations are
possible, including observable or controllable canonical forms.

Similar considerations can be made for the case covered by Theorem
4.2. In this last case the elementary system has repeated complex-conjugate
poles.

It is important to realize that the frequency-distributed realization we
are just describing is applicable to systems having several types of different
singularities. In such a case, even the structure of the elementary systems
changes with ξ. This situation is illustrated by the following example.

Example 5.1. Consider a system described by G(s) = 1√
s2+1

√
s+1

,

having branching points at −1 and ±j. Using elementary properties of the
Laplace transform [33], we find that

g(t) = L−1{G(s)} = J0(t) �
e−t

√
πt

. (5.5)

The FD representation can be derived by considering integration con-
tour shown in Fig. 5. By repeating the considerations used in proofs of
Theorems 2.1 and 3.1, it is easily seen that in the case under consideration
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the elementary transfer functions have the following form

G(s, ξ) =

{
G1(s, ξ) , ξ ∈ [0, 1)

G1(s, ξ) +G2(s, ξ) , ξ ≥ 1
,

where G1(s, ξ) =
γ1,c(ξ)(s+ξ)+γ1,s(ξ)

(s+ξ)2+1
and G2(s, ξ) = γ2(ξ)

s+ξ . Weight function

γ2 is computed according to (1.4), yielding

γ2(ξ) =
sin(π2 )

π
√
ξ − 1

√
ξ2 + 1

,

while γ1,c and γ1,s are computed according to (3.2) and (3.3), respectively,
as imaginary and real part of

γ1(ξ) =
2j

π
√
ξ
√−ξ − 2j

√
1− ξ − j

.

The overall frequency-distributed representation is

∂x1,c(ξ, t)

∂t
= −ξx1,c(ξ, t) − ωx1,s(ξ, t) + u(t)

∂x1,s(ξ, t)

∂t
= ωx1,s(ξ, t)− ξx1,c(ξ, t)

∂x2(t, ξ)

∂t
= −ξ x2(t, ξ) + u(t) ,

y1(t) =

∫ ∞

0
[γ1,c(ξ)x1,c(ξ, t)− γ1,s(ξ)x1,s(ξ)] dξ .

y2(t) =

∫ ∞

1
γ2(ξ)x2(t, ξ)dξ ,

y(t) = y1(t) + y2(t) .

The alternative way of computing (5.5) is (as illustrated in Fig. 5)

g(t) =

∫ ∞

0
[γc,1(ξ) cos(t)− γs,1(ξ) sin(t)] e

−ξtdξ +

∫ ∞

1
γ2(ξ)e

−ξtdξ . (5.6)

6. Singular Representations

In the present section we show that in the cases when the transfer
function under consideration has poles, the output weight functions must
contains impulses, and have to be interpreted as a generalized function [32].
Particularly, when the system under consideration is finite-dimensional,
i.e. when the corresponding function is rational, the frequency-distributed
representation reduces to the classical state-space model in Jordan form [1,
15]. For simplicity, only systems having simple poles, real or complex, are
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Figure 5. Integration contour used in Example 5.1.
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Figure 6. The comparison of the impulse response g(t)
considered in Example 5.1 computed by means of eq. (5.6)
(filled dots) and eq. (5.5) (thick line).

considered in the present section. The results can be extended to systems
with repeated poles in a straightforward manner.

6.1. Systems with simple, real poles. Consider a strictly proper trans-
fer function G(s) having simple real poles pk ∈ R, k ∈ {1, . . . , n}, where n
may be finite or infinite. Such a transfer function can always be written in
the form

G(s) =
n∑

i=k

Kk

s− pk
, (6.1)
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where Kk are real coefficients obtained by the partial fractions expansion
procedure. It is not hard to see that such a transfer function satisfies
Assumptions 1 to 4 with a = maxk pk.

Since Assumption 5 is not satisfied, one is no longer allowed to apply
the Dominated Convergence Theorem to (2.5). However, by inserting (6.1)
into (2.5) instead,

g(t) = lim
ε→0+

1

π

∫ ∞

−a
Im

{
n∑

k=1

Kk

−ξ − jε− pk

}
e−ξtdξ

= lim
ε→0+

1

π

∫ ∞

−a

n∑
k=1

Kkε

(ξ + p)2 + ε2
e−ξtdξ .

It is well-known result from the theory of generalized functions [32] that
the so called Cauchy kernel 1

π
ε

x2+ε2
weakly converges to the Dirac’s δ-

distribution, therefore

g(t) =

∫ ∞

−a

n∑
k=1

Kkδ(ξ + pk)e
−ξtdξ =

n∑
k=1

Kie
pkt .

The last expression implies that one can define

γ(ξ) =
n∑

k=1

Kkδ(ξ + pk) (6.2)

and formally retain the same form of the diffusive representation (1.2)–
(1.3). Clearly, the only relevant state variables are xk(t) = x(−pk, t), with
dynamics

ẋk(t) = pkxk(t) + u(t) . (6.3)

In this particular case, the frequency-distributed representation reduces to
the classical, diagonal state-space realization of rational transfer functions.
The method is, however, completely valid even in the case of systems having
infinitely many discrete poles, as illustrated by the following example.

Example 6.1. Consider transfer function

G(s) =
sinh(β

√
s)

sinh(
√
s)

,

with β ∈ (0, 1), which has simple poles at pk = −(kπ)2 for all k ∈ N.
Since all poles are simple, coefficients of the Heaviside’s expansion can be
computed as

Kk = lim
s→−(kπ)2

(s + (kπ)2)G(s) = (−1)k−12πk sin(βπk) ,

which implies
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sinh(β
√
s)

sinh(
√
s)

=
∞∑
k=1

(−1)k−12πk sin(βπk)

s+ (kπ)2
.

The corresponding diffusive representation is actually an infinite-dimensional,
diagonal state-space model

ẋk(t) = −(kπ)2xk(t) + u(t) ,

y(t) =
∞∑
k=1

(−1)k−12πk sin(βπk)xk(t) .

6.2. Systems with complex-conjugate poles. Consider a strictly proper
transfer functionG(s) having complex-conjugate pole pairs pk±jω, for some
ω > 0 and pk ∈ R, k ∈ {1, . . . , n}, where n may be finite or infinite. The
corresponding Heaviside’s expansion is

G(s) =
n∑

k=1

αk + jβk
s− pk − jω

+
αk − jβk

s− pk + jω
, (6.4)

with αk, βk ∈ R. Such a transfer function satisfies Assumptions 1, 2A, 3A
and 4 with a = maxk pk, but not 5A.

One can now re-trace all the steps of the proof of Theorem 3.1, and
identify the point at which instead of applying the Dominated Convergence
Theorem, weak convergence of the Cauchy kernel would be utilized. Instead
of this, a more elementary, direct approach can be utilized. Eq. (6.4) can
be re-written as

G(s) =

n∑
k=1

2αk(s− pk)− 2βkω

(s− pk)2 + ω2
,

implying impulse response in the form

g(t) =

n∑
k=1

epkt [2αk cos(ωt)− 2βk sin(ωt)] , (6.5)

which is formally equivalent to (3.1) with

γc(ξ) =
n∑

k=1

2αkδ(ξ + pk) ,

γs(ξ) =
n∑

k=1

2βkδ(ξ + pk) .
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7. Conclusions

Frequency-distributed representation derived in the present paper ex-
tends the notion of the diffusive representation previously derived and uti-
lized primarily in the context of fractional order systems. The proposed
representation is applicable to a wide class of linear systems, including
those with complex-conjugate pairs of singularities. Potential applications
span from developing finite-dimensional approximations, both continuous-
time and discrete-time ones, to stability analysis and control design. Closer
investigation of these issues goes beyond the scope of the present work and
will be pursued further in the future.
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